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Abstract. We study generalization in a large fully connected committee machine with 
continuous weights trained on patterns with outputs generated by a teacher of the same stmcture 
but corrupted by noise. The corruption is due to additive Gaussian noise applied in the input 
layer or the hidden layer of the teacher. Contrary to related cases, in the presence of input 
noise the generalization e m r  fs is not minimized by the teacher's weights. For small values 
of the load parameter .z the student is in a permutation-symmetric phase. AS OL increases three 
additional phases emerge. The large- theory of the stable phase is similar to the tree committee 
machine. In particular, at zero temperature in the presence of noise G~ does not approach its 
minimal value emin and the student's weighs do not converge to those of the teacher. For a 
positive temperature cS - E ~ ; "  decays as a power of CL, the exponent being the same as in the 
corresponding case of the me. However, for all values of OL an at least metastable phase exists 
which is permutation symmetric with respect to the teacher. 

1. Introduction 

The calculation of the generalization ability of feedfonvard neural networks has been a 
subject of considerable interest. Here we extend this work to the case of the fully connected 
committee machine learning specific instances of an unrealizable rule. The corresponding 
realizable case has been discussed within the annealed approximation in [4, 71 and using 
the replica formalism in 161. The analogous questions for the unrealizable case have been 
considered in [SI for the tree committee machine and in [3] €or the perceptron. 

The connected machine has N real inputs ( t j )  and K hidden units, each characterized 
by a weight vector J, E RN. Its output is given by 

We may assume that 1 Ji I = 1. The weight vectors are to be chosen such that r, approximates 
well a target concept (the teacher) which in this paper will be assumed to be given by a 
machine of a similar smcture., The teacher is also a committee machine with K hidden 
units and orthonormal weight vectors JF but its output 
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is corrupted by noise. The noise terms q k  are assumed to be independent zero-mean Gaussian 
random variables with variance: 

for values of the yi between 0 and 1. If y 1 ~  = 1 the output of the teacher is deterministic 
and we recover the realizable case. For y ~ y z  = 0 it is independent of the input t and we 
have the random map problem, some aspects of which have been discussed in [l, 21. The 
noise in the input layer can be thought of as stemming from Gaussian noise added to each 
of the inputs $j and in this case the assumed independence of the qi is a consequence of 
the orthogonality of the teacher vectors. 

A training set of P examples ($e,  re)  is constructed by independently picking inputs 
t,!' (from the normal distribution) as well as noise terms q t  and assigning outputs tfl by (2). 
The training energy E ( J )  = C, ~ ( - ~ P T J ( $ ~ ) ) ,  where e is the Heaviside step function, 
then measures the performance of a student with weight vectors Ji on the training set. This 
is used to define on the space of students a probability density p ( J )  with Boltzmann weight 

where p = 1 f T is the inverse temperature. One hopes that for sufficiently large P 
a student picked from p ( J )  will perform well on new inputloutput pairs constructed in the 
same manner as those in the training set. So the student should have minimal generalization 
error E ~ ( J ) ,  where cS is the average of b'-rJ($)i~o($, q)) over noise terms qi and normally 
distributed inputs cj .  

A different measure of the student's performance is the distance between its weight 
vectors and those of the teacher (after a suitable reordering). This will be closely related to 
c8 if c 8 ( J 0 )  = minJ E ~ ( J ) .  This is the case for the perceptron [3] and the tree committee. 
It will turn out not to be true for the fully connected machine in the presence of input noise 
since the student can adapt to the fact that rJo($, 0) and i J o ( $ ,  7) may be anticorrelated for 
some inputs t. 

2. Order parameters and generalization error 

To study typical properties of the student space we calculate the quenched average of the 
n-times replicated Gardner volume. This leads to a symmetric ( K  + n K ,  K +nK)-matrix 

gab= ' I  Jp'Jp a,b=O, ..., n (4) 
where a = 1, . . . , n indexes the replicas and a = 0 the teacher. The order parameters are 
the non-constant entries of this matrix. As in the realizable case the symmetries of the 
problem suggest a site-symmetric parametrization of the order parameter matrix: 

(5) ob - -ab qii - p +S i jqab .  

We shall call the yb  the permutation symmetric and the qnb the specialized overlaps. In 
the appendix it is shown that using this parametrization the expression for the replicated 
Gardner volume becomes quite similar to the one for the perceptron in the limit of large K 
and with the scaling assumption yb = 0 ( 1 / K )  which arises naturally in the course of the 
derivation. 

A subsequent parametrization with one step of replica-symmetry breaking leads to 
the specialized order parameters q0,qI. R and to rescaled permutations symmetric ones 
PO, p l ,  p, I?. Here R and I? denote the studendteacher overlaps, qi and pi the student/student 
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overlaps i n  different replicas, and i is the overlap between hidden units in the same replica. 
Note, that PO, PI, R can have any real value because of the rescaling (A7) and that ,? > - 1 .  
It is convenient to introduce the abbreviations: 

2 

2 
qie = -(pi  H + arcsin(qi)) 4: = pi + qi 

Re =~ - p ( y i  li + arcsin(yl R))  Re = R + R . 
The generalization error depends only on the overlaps between the student and the 

teacher and is for large K :  

Applying the Cauchy-Schwarz inequality to xi J,' xi JP shows that Re' < 1 + E .  From 
this it is easy to see that the minimum €mio of eg is attained at R = 1, j = j s  and is given 
by 

The optimal value is zero if y~ = 1 &d diverges for yl + 0. So the teacher's 
weights give an optimal generalization error only if there is no input noise. Moreover, the 
dependence of c8 on R vanishes as @ + CO. So in the limit of high input noise we may 
think of the optimal student as being the perceptron obtained by averaging the teacher's 
weight vectors. 

3. One-step RSB theory 

Within the one-step ansatz the free energy F per weight can be written as 

m 2 x) In/Dy[e-S+(l'-e-@)H(z)]m 

1 +; In(1 + j - 41 + m(ql -so)) 

If the permutation-symmetric parameters are zero, these expression become identical to the 
ones found for the tree committee machine [81. Similarly as for the RS equations [6] the 
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stationarity conditions for PO, PI  and j? imply 

1 + p - q; + m(qf - 4:) = W / K )  
q: - Re* = 0(1 /K) .  

The remaining equation admits the solution 

qf - q; = U ( l / K ) .  (12) 
This is the physical solution since 1 + f i  - 43 is non-negative (it is the length of the vector 
K - ' / 2  C ( J ;  - J L )  if Jl'J: = 4;) and this, together with (lo), implies (12). For large 
K and a finite value of the load parameter CY = these relations allow us to eliminate 
three of the four permutation symmetric parameters. Further, stationarity with respect to R 
yields 

which is independent of a. 
As a consequence of (10)-(12) for q1 -P 1 the same asymptotic relationship holds 

between the one-step and the replica-symmetric (RS) theory as in the tree committee [SI. 
In particular, for T = 0 and in the presence of noise the RS theory gives for large CY an 
asymptotically correct eg but an incorrect value of the free energy. For finite ,9 the one-step 
theory becomes equivalent to the RS theory at inverse temperature mf3 as CY -+ 03, where 
m must be chosen such that the RS entropy decreases only logarithmically with CY. 

The stationarity conditions for the specialized parameters admit the permutation 
symmetric solution qj = R = 0. This solution is locally stable against fluctuations in 
the specialized parameters since ;qje - q; is proportional to q! for small qt and similarly 
for Re and Re. In view of (12) it must be replica-symmetric. Using the analogy to the 
perceptron described in the appendix and the results in [3] this may easily be confirmed by 
evaluating the AT condition. The generalization error of the permutation symmetric solution 
is independent of CY and equals 

As already observed in [SI the overlap i between different hidden units is zero for yI yl = ~ l  
and T = 0. It increases with y1y2 and at y1y2 = T = 0 one finds 5 = -1. A similar 
anticorrelation of the hidden units has been found in the random map problem OF the K = 3 
committee machine [I]. 

The argument for the local stability of the permutation symmetric phase allows any 
combination of the specialized parameters to be zero as long as this does not violate the 
stability of the entropy term. There are four possibilities which can all yield locally stable 
solutions: 

A 41 = qo = R = 0 permutation symmetric, 
B: 41 > q o = R = O  
C: q i > q o > R = O  
D q1 > 40 2 R > 0 specialized. 

(15) 

Note, that solutions of type B are, by definition, not replica-symmetric while C and D can 
be. We shall not attempt a full description of this rich phase structure here but highlight 
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some of the main points, focusing on T = 0 and the random map problem as well as the 
realizable case; 

In the random map problem we find a transition from A to B at CY ": 4.91 with m = 1 
and q1 close to 1 at the critical point. A similar continuous transition from a locally stable 
replica-symmetric phase to one with broken replica symmetry has been found previously in 
.the random map problem of the binary perceptron [5] at positive temperatures: At a x 15.4 
a transition from B to a phase C with broken replica symmetry occurs, accompanied by 
a discontinuous increase in qo. Even in this last phase j is equal to its minimal possible 
value -1. So the anticorrelation of the hidden units maximizes the storage capacity. 

In the realizable case a discontinuous transition to a replica-symmetric phase D was 
found at CY x 7.65 for T = 0 in [6]. For higher IY this solution describes the stable 
state. However, the permutation symmetric solution does not describe the metastable state 
correctly for large CY. Assuming replica symmetry q1 = qo = q we find that the maximum 
with respect to q of the free energy at q = 0 is. only a local one above CY x 17.0. So 
a transition to phase C occurs, accompanied by a small but discontinuous increase in eg. 
Indeed, eg continues to rise and for CY -+ 00 we find E zz 0.681 as compared to the 
permutation-symmetric prediction d = 1. Further, j is negative in phase C, so the student 
is finding a compromise between having a high overlap with the average of,the teacher's 
vectors and maximizing its storage capacity. The replica-symmetric learning curve is shown 
in figure 1. 

Considering the full one-step equations, still for y,f i  = 1, we find that permutation 
symmetry is broken in the metastable state already above CY x 7.68. Here a transition to 
phase B occurs, with m = 1 at the critical point as in the random map problem. The 
asymptotic relationship between the one-step and the RS theory shows that for some higher 
a there will be a transition from B to a phase C with broken replica symmetry. The 
generalization error will approach the value of the RS prediction for this phase as CY -+ W. 
So even in the one-step description, a student staying in the metastable state will display a 
non-monotonic e$. 

The large-a theory of the stable state in the general case 0 c y l f i  < 1 is similar to 
the one of the tree committee machine. In particular, at zero temperature the specialized 
overlap R does not approach 1 as CY + 00 and thus neither e8 + emin nor J -+ Jo. In 
contrast to the tree, a positive value of R is only achieved at T = 0 for low levels of noise. 
For higher levels, even as CY -+ 00, the stable state has R = 0 and is of type C. Examples 
of this behaviour are shown in figure 2. For T > 0 we do find R + 1 with increasing 
a ,  and for qi = 1 condition (13) requires j to be chosen so as to minimize es. So the 
same exponent in the power law for the decrease of c8 - cmn is found as for the tree. In 

"..cl, 

0.27 

n 117c I 
/D I 

Figure 1. Replica-symmetric leaming curves 
for y ~ f i  = 1 and T = 0. The dotted line 
corresponds to the stable, the full curve to the 
metastable state. 'The broken line hints at the 
one-step,corrections for rhe metastnble state. The 
broken line and full cluve meet at o( = m and 

% 0.321. 
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pazticular, the one-step equations yield: 

Figure 2. Asymptotic value of R for 01 -, M 

as a function of y ~ n .  The upper curve is for 
y1 = 1,theloweroneforfi = 1. Thetransition 
to R = 0 OCCUR at n GZ 0.983 in [he upper md 
at y, GZ 0.9911 in the lower curve. Note the 
logarithmic scales used in the plot. 

and thus, in contrast to the tree, the student's weights converge to those of the teacher only 
if yl = 1. 

This last point, along with the rich phase structure, is perhaps the most striking difference 
to the tree committee machine. It should be pointed out that, since the the teacher vectors 
are orthogonal, in the present case we may even assume the teacher to be a tree committee. 
So the target concept can he thought of as being the same in the two cases. The difference 
arises from the fact that in the present case the student space is not constrained to orthogonal 
vectors and this can allow the student to improve on the noiseless teacher in the unrealizable 
setting. 
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Appendix 

By standard arguments the quenched average of the replicated Gardner volume (Vn) is for 
large N :  

P 
ln(V") - N extr -Gr) (q)  + Gr) (q ) .  

4: N 

We first discuss GP) which may be written as 
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The Zp are zero-mean Gaussian random variables (independent of q ~ + l )  with a covariance 
matrix 4 given by 

(Z"2b) = ' 

y1q:b a > 0 b = O  

otherwise. 

- 1  a = b = O  

a = b > O  1 + -pa" 

2 (A91 
-(pob + arcsinqab) a > b > O  

2 
- y ~ ( y ~ p "  + arcsin(ylqnb)) a t b = 0. 

2 
H 

H 

The assumption of site symmetry (5) then implies that a coordinate transformation exists 
such that 

K 

z, = A X ;  + B K - I ~ ~  xX (A4) 

where Zi denotes the vector (Zp, Z,!, . _ , _  , Z:) &d the xf are independent and normally 
distributed random variables. The (n + ~ l ,  n + 1)-matrices A and B need to satisfy 

k=1 

(A5) 
(zIzlT) - ( z ~ z ~ ~ )  = A A ~  

(zlzlT) + ( K  - i ) (z1z2T) = (A + K ' / ~ B ) ( A  + K ' / ~ B ) ~ .  

These equations have real solutions since (5) implies that eigenvalues of the matrices on 
the LHS of these equations are also eigenvalues of the entire covariance matrix 4.  

VJe may thus rewrite GP)  as^ 

GP' = I n f i / d u a ( n S ( u n  L1 - ( B K - 1 / 2 ~ x ; ~ ) € ( K 1 / Z m " ( u u )  + xQ(ua))) X.SK+I 

x'(uy) 

The ma(uR) should be chosen such that the mean of ~ " ( u " )  is zero. Since the xp are 
independent, the joint distribution of x and R = K-"* xi  x,  will approach for large K a 
Gaussian one with covariance matrix C(u). But if the U' are of order 1. the argument of E 
will be dominated by K'/zmu(ua) in this limit. We assume this not to be the case and take 
the U' to be of order K-l l2  which is equivalent to the reparametrization 

646) 0=0 

K-'" C(sign(un + (AX;)")  - mu(,')). 
i 

pan = ( K  - l ) y  (U > b )  . (A7) pnb = K y b  

Further, this implies C(u)  + C(0) as K + 00 and the integrals over the U' in (A6) can 
be easily done. In the end we find for large K :  
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The calculation of the entropy term GP) involves a symmetric (nK,nK)-matrix 6 of 
order parametersconjugate to the overlaps between students qGb (a, b > 0) as well as a 
(nK. K)-matrix R of conjugates to the qGo (a > 0). One finds 

(A101 
where Jo is the (N. K)-matrix of teacher vectors. Since they are orthonormal the trace 
may immediately be simplified to Tr(k'G-'k). We assume the conjugate parameters to be 
site-symmetric as well: 

(Al l )  

Thinking of RnK as (WK, this implies that the subspace { ( x , x ,  . . . , x ) l  x E R") is 
stable under B .  This also holds for the subspaces (x.  -x ,  0,.  . . , 0). ( x ,  0, --x, 0,. . . , O), 
. . . , ( x ,  0.. . . , 0, -x) .  Similarly 8's R has eigenvectors (1, I , .  . . , l), (I ,  -1.0,. . . ,O) 
etc and hence 

Tr(kTG-'k) = (&+ K ~ P ) ' ( ~ S  + K G p ) - l ( & +  K&) + +(K - l)&Q;'& 

de t i  = det(& + KGp)detGsK-' . 
A linear transformation in the conjugate parameters then leads to 

GPP ' I  = G;b + &-ab ZJ qS p. ' I  = li; + S , B ;  . 

"-, - 

(-417.1 

where 13:; is essentially the entropy term of the perceptron. 
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